EPSON

VC Evaluation

Vibration Measurement System

- User’s Guide

Notice of Document

Evaluation board/kit and development tool important notice

1.

2.

This evaluation board/kit or development tool is designed for use for engineering evaluation, demonstration, or development
purposes only. Do not use it for other purposes. It is not intended to meet the requirements of design for finished products.

This evaluation board/kit or development tool is intended for use by an electronic engineer and is not a consumer product. The user
should use it properly and in a safe manner. Seiko Epson does not assume any responsibility or liability of any kind of damage and/or
fire caused by the use of it. The user should cease to use it when any abnormal issue occurs even during proper and safe use.

The part used for this evaluation board/kit or development tool may be changed without any notice.

NOTICE : PLEASE READ CAREFULLY BELOW BEFORE THE USE OF THIS DOCUMENT

The content of this document is subject to change without notice.

10.

11.
12.

This document may not be copied, reproduced, or used for any other purposes, in whole or in part, without the consent of Seiko
Epson Corporation("Epson").
Before purchasing or using Epson products, please contact with our sales representative for the latest information and be always
sure to check the latest information published on Epson's official web sites and sources.
Information provided in this document such as application circuits, programs, usage, etc., are for reference purpose only. Please use
the application circuits, programs, usage, etc. in the design of your equipment or systems at your own responsibility. Epson makes
no guarantees against any infringements or damages to any third parties' intellectual property rights or any other rights resulting from
the information. This document does not grant you any licenses, intellectual property rights or any other rights with respect to Epson
products owned by Epson or any third parties.
Epson is committed to constantly improving quality and reliability, but semiconductor products in general are subject to malfunction
and failure. In using Epson products, you shall be responsible for safe design in your products; your hardware, software and systems
are designed enough to prevent any harm or damages to life, health or property even if any malfunction or failure might be caused
by Epson products. In designing of your products with using Epson products, please be sure to check and comply with the latest
information regarding Epson products (this document, specifications, data sheets, manuals, Epson's web site, etc.). When using the
information included in the above materials such as product data, chart, technical contents, programs, algorithms and application
circuit examples, you shall evaluate your products both in stand-alone basis and within your overall systems. You shall be solely
responsible for deciding whether or not to adopt and use Epson products.
Epson has prepared this document and programs provided in this document carefully to be accurate and dependable, but Epson
does not guarantee that the information and the programs are always accurate and complete. Epson assumes no responsibility for
any damages which you incurred by due to misinformation in this document and the programs.
No dismantling, analysis, reverse engineering, modification, alteration, adaptation, reproduction, etc., of Epson products is allowed.
Epson products have been designed, developed and manufactured to be used in general electronic applications (office equipment,
communications equipment, measuring instruments, home electronics, etc.) and applications individually listed in this document
("General Purpose"). Epson products are NOT intended for any use beyond the General Purpose that requires particular/higher
quality or reliability in order to refrain from causing any malfunction or failure leading to harm to life, health or serious property
damage or severe impact on society, including, but not limited to listed below. Therefore, you are advised to use Epson products
only for the General Purpose. Should you desire to buy and use Epson products for the particular purpose other than the General
Purpose, Epson makes no warranty and disclaims with respect to Epson products, whether express or implied, including without
limitation any implied warranty of merchantability or fitness for any particular purpose.
[Particular purpose]

Space equipment (artificial satellites, rockets, etc.)

Transportation vehicles and their control equipment (automobiles, aircraft, trains, ships, etc.)

Medical equipment (other than applications individually listed in this document) / Relay equipment to be placed on sea floor

Power station control equipment / Disaster or crime prevention equipment / Traffic control equipment / Financial equipment

Other applications requiring similar levels of reliability as the above
Epson products listed in this document and our associated technologies shall not be used in any equipment or systems that laws
and regulations in Japan or any other countries prohibit to manufacture, use or sell. Furthermore, Epson products and our
associated technologies shall not be used for developing military weapons of mass destruction, military purpose use, or any other
military applications. If exporting Epson products or our associated technologies, you shall comply with the Foreign Exchange and
Foreign Trade Control Act in Japan, Export Administration Regulations in the U.S.A (EAR) and other export-related laws and
regulations in Japan and any other countries and follow the required procedures as provided by the relevant laws and regulations.
Epson assumes no responsibility for any damages (whether direct or indirect) caused by or in relation with your non-compliance with
the terms and conditions in this document.
Epson assumes no responsibility for any damages (whether direct or indirect) incurred by any third party that you assign, transfer,
loan, etc., Epson products.
For more details or other concerns about this document, please contact our sales representative.
Company names and product names listed in this document are trademarks or registered trademarks of their respective companies.

2022.08
©Seiko Epson Corporation 2023, All rights reserved.

Page 2 MSG006-002h_Rev20250331

Trademark

Raspberry Pi’s a trademark of Raspberry Pi Foundation.

Microsoft and Windows are trademarks of the Microsoft group of companies.

e Epson is a registered trademark of Seiko Epson Corporation.

Other product names are trademarks or registered trademarks of the respective companies.

Page 3 MSG006-002h_Rev20250331

Table of Contents

NOLICE Of DOCUIMIENT #+r+everrerersrasueneneeneneueenteteuseeatetesaeaetateasaeaetanesaeastatetsaeisrteteneaeierteetraeiaretenaeirees 2
=16 1= 8 4 T= 1 T 3
REVISION HISEOMY +++++++seesrsstt sttt 6
1. ROIGTEA DOCUIMIEINTS -+ vrrrersrrarnssusrnensssrnesssisresnsssiersrssaersrtsanrertsanrtertsatraerettrtereiramtea 7
D TIIEFOCUCHION +#+ v e vrvernenenennaneueenteteaee et et eaee et eaease s s etaase et aaeae e et aaaasesetatensaesatataneesartetenenenartanenes 8
3. SPECIfICALIONS *++++++rrrerr s s e e e e ettt 9
3.1. Verified Operating ENVIFONMIENE -+« seeeettermmmmmeii e 9
3.2, SUPPOIEA SENSOIS «+xrsrrrrrrrrrrnnrtsu ettt 9
3.3. Application CONfigUration ParamEtrs ««««««««««ssssuusmmmmmmurstttttttttt s 9
3.4, EXECULION SPECIfICAtIONS «+-+++rrrrrrrmmsserree ettt 9
3.5. INPUL SPECIfICALIONS +x s rerrrrrrrrrntte ettt 9
3.6. OULPUL SPECIfICALIONS ==+ +rrrrrrrrrsns ettt 10
3.6.2. MEASUrEMENE DAt Fil@ «re rerrereenrenrmumiuiitittiititrir it a s eae e as 10

3.6.3. Measurement INfOrmMation Fil@ <« s tee ettt e 10

3.6.4. VC EVAlUation Data Fil@ -« «rrrerrrrraraertrtmntiiiitetatiitrtetatai sttt 10

3.6.5. VC Evaluation Level (OUtput to LOg File@) «+++sreeeerrrrmimiiiiiiiiii 11

3.6.6. VC Evaluation Level (OUtpUL t0 GPIO) -+++errrrrrnnsttemtmitiiiiiiii i 11

3.6.7. SEAtUS MESSAGES «rrrrrrrrrrersrrrnnnntntit ettt 11

3.6.8. LOG Fil@rrnnreeeeeeeeetiii e 12

3.6.9. OULPUL FOId@I «errmrerrrtn ettt 12

4, Setting Up 0N RASPDEITY Pi«rreertteettttmtiii i 13
A.1. File and FOIAEr StIUCEUIE =+« r s sreretttntutmiatttttttiattsasttattastaeta sttt asaiaitatans 13
4.2, PreParation ««««eeeeeesseeeettett e 13
4.3. Transfer ZIP File t0 RASPDEITY Pi««rstereeruitiiiiiiiiii 13
4.4, Install the Application On RASPDErTy Pi«««ssssteeettmtmmiiiiiiiiiiii 13
4.5. ApPlication CONfIGUIALION «««««essrerrrrrettt e 14

5. RUNNING the AP PICatION -+« «r s ererr ettt 15
6. APPENiX : DEVEIOPEr GUILE «++rrxrrrrerrnserert ettt 16
6.1. Building the development ENVIFONMENT -+« xxrrrrrrirtiri i 16
6.1.1. Creating a Python Virtual ENVIFONMENT «««««ererrmemmmmmii 16

6.1.2. INStalling PaCKaGES -+« rseerrrerrrrnnttttee ittt 16

6.2. Raspi Logger CUSLOMIZAtion GUILE «+++rrrrerrrrmmmie e 16
6.2.1. Overview of Raspi LOGGEr PrOGIram -+ ««««s s srrrmmsiiiiiiisiiiiiii s 16

6.2.2. CUSLOMIZAtION OVEIVIQW ++ s rrrrrrneraerttitruerttisrerttitraersitsasrsteasreitsaras ittt 17

6.2.3. logger.LoggerFactory ClaS S v rr v e e e s s e e s s e e r s e 18

6.3. Customization Points for the VC-Based Vibration Measurement System ««-«--eorrrrnrn 19
6.3.1. vc_calc_app.VcConfig ClaS S v rr v e e e s s e e s s e e r s e 19

6.3.2. vc_calc_app.VeConfigurator Class ««+tttt rrrrrrrttttiiiiiiiiiiii 19

6.3.3. vc_calc_app.VcWriterArgs ClQSS *rrrrrwmrr s e rnnsas s e s s 19

6.3.4. VC_CALC_apP.VEGPTIO ClaSS «++rwrerrrrsrtterrrtmmtttttinti ettt 19

6.3.5. vc_calc_app.VcA352 ClaSS »r v v v rrr e e e s s e e s e e s e 19

6.3.6. vC_calc_app.VCLOGEErFactory Class: ++++tttttrrrrrrrtrtttiitiiiiiiiiiiiiii 19

6.3.7. vc_calc_app._ main__ MOAUIE -eeessrererremeti 20

Page 4 MSG006-002h_Rev20250331

7. Contact Information

Page 5 MSG006-002h_Rev20250331

Revision History

Rev. No.

Rev. Date

Page

Rev. Contents

20250331

2025/3/31

ALL

First edition

Corresponding to the release of MSG006-001a_v1.0.0

Page 6

MSG006-002h_Rev20250331

1. Related Documents

“Setup Manual for Vibration Measurement System using Raspberry Pi Products” Rev.20250331
“Operation Manual for Vibration Measurement System using Raspberry Pi Products” Rev.20250331
“VC Evaluation Library - Reference Manual” Rev.20250221

“Monitoring Application for Vibration Measurement System - User’s Guide” Rev.20250331

“ADRSRU4 Relay control expansion board for Raspberry Pi,” Bit Trade One Co., Ltd. (https://bit-trade-
one.co.jp/en/product/module/adrsru/)

vk wnN e

Page 7 MSG006-002h_Rev20250331

https://bit-trade-one.co.jp/en/product/module/adrsru/
https://bit-trade-one.co.jp/en/product/module/adrsru/

2. Introduction

This user guide explains the following aspects of the “VC-Based Vibration Measurement System”:
e Specifications
e Setup Procedure
e Execution Method

e Developer Guide

The “VC-Based Vibration Measurement System” (hereafter referred to as “this application”) is an application
that combines the “Vibration Measurement System using Raspberry Pi” (hereafter “Raspy Logger”) and the “VC
Evaluation Library.”

This application processes measurement data from acceleration sensors via the Raspi Logger and calculates
VC levels using the VC Evaluation Library, then outputs the results.

By installing the “BitTradeOne Relay Control Expansion Board ADRSRU4” (hereafter “Relay Control Board”) on
the Raspberry Pi, it is possible to control relays based on vibration levels.

In addition to sending status messages via the MQTT broker of the Raspi Logger, this application can also
send VC evaluation results as MQTT messages. These messages can be viewed in a web browser on a PC using
the “Vibration Measurement System Monitoring Application” (hereafter “Monitoring App”).

Since the core execution mechanism is based on the Raspi Logger, the execution and measurement methods
follow the same procedures.

Raspberry Pi4B / 5

h

MQTT Broker \P Monitoring Web Browser

App. |
*

VC Evaluation System Relay Control Sianaling Equibment
VC Evaluation Board

Lib.

- Raspi Logger Ccsv

Figure 2-1 Overall System Configuration

Page 8 MSG006-002h_Rev20250331

3. Specifications

3.1. Verified Operating Environment
e Raspberry Pi 4B
e Raspberry Pi 5

3.2. Supported Sensors

e M-A352AD

e M-A552AR
Note: This application does not support M-A342VD and M-A542VR.

3.3. Application Configuration Parameters

Since this application is based on Raspi Logger, its configuration parameters are inherited. For details, refer to
Related Document 2. The following are parameters specific to this application:

Table 3-1

Parameter Name Description Allowed Values

VC_FFT_SIZE Number of FFT points for VC Even numbers between *1
evaluation 2000~20000

VC_EXE_SIZE Number of data points used in Integer divisible by *1
VC evaluation VC_FFT_SIZE

VC_AVG_SIZE Averaging count for VC average | Integer between 10-50 *1

output

VC_LOG_SINGLE Whether to log SINGLE True, False
evaluation result

VC_LOG_AVERAGE Whether to log AVERAGE True, False
evaluation result

VC_OUTPUT_RAW Whether to output raw True, False
measurement data as CSV

VC_CONTROL_GPIO | Whether to enable GPIO control | True, False

e *1 : See Related Document 3 for details.

3.4. Execution Specifications

The execution method of this application follows the Raspi Logger. Refer to Related Document 2 for details.

3.5. Input Specifications

This application supports measurement using multiple M-A352AD/M-A552AR sensors connected via USB.
Only a sampling rate of 1000 SPS is supported.

Note: M-A342VD and M-A542VR sensors are not supported. If connected, an error will occur, and the
application will terminate.

Note: If the sampling rate is set to anything other than 1000 SPS via the A352_SPS parameter, an error will
occur, and the application will terminate.

Page 9 MSG006-002h_Rev20250331

3.6. Output Specifications

In addition to the measurement functions of Raspi Logger, this application performs VC evaluation calculations
and outputs the following types of data:

Measurement Data File
Measurement Info File

VC Evaluation Data File

VC Evaluation Level (to log file)
VC Evaluation Level (to GPIO)
Status Messages

Log File

Nou s WNe=

3.6.2. Measurement Data File

The measurement data file records the raw data collected during measurement. This file is generated
according to the specifications of the Raspi Logger. If the configuration parameter VC_OUTPUT_RAW is set to
False, this file will not be generated.

3.6.3. Measurement Information File

The measurement information file contains metadata related to the measurement session. In addition to the
standard output items from the Raspi Logger, this application adds its own configuration parameters to the file.

3.6.4. VC Evaluation Data File

This application performs VC evaluation on the measurement data and outputs the results as CSV files. The
VC Evaluation Library performs two types of calculations: SINGLE and AVERAGE, which are output to separate
files.

VC Evaluation File Names:
e SINGLE : “[Sensor Model]_[Sensor Serial] vccalc_sgl.csv”
e AVERAGE: “[Sensor Model]_[Sensor Serial]_vccalc_avg.csv”

VC Evaluation File Layout (common to SINGLE and AVERAGE)

e Data Fields (119 columns per row):
Serial Number
» Timestamp
VC Evaluation Level (OA, A, B, C, D, E, F, G)
For each of the following axes: Composite, X Axis, Y Axis, Z Axis:
- Peak Velocity (mm/s)
- Peak Frequency (Hz)
- 1/3 Octave Band Velocity Results (27 values)
e Header Rows (2 rows)
First: No, Time, VC-Level, Composite, X Axis, Y Axis, Z Axis
Second: Peak Velocity, Peak Frequency, 1.00 Hz, 1.26 Hz, -+, up to 27 bands (1/3 octave band)

e Data Rows (from 3rd row onward)

No Time VC-Level Composite
Peak Velocity (mm/s) Peak Frequency (Hz) 1.00 (Hz) 1.26 (Hz) ---
1 2025/03/01 10:00:00 C 0.011457 10.08 0.000321 0.000221

Page 10 MSG006-002h_Rev20250331

2 2025/03/01 10:00:01 C 0.011258 10.08 0.000307 0.000225

Figure 3-1 Example of VC Evaluation Data File

3.6.5. VC Evaluation Level (Output to Log File)

Among the results of the VC evaluation calculation, the VC evaluation level is output to the log file.

If the configuration parameters VC_LOG_SINGLE or VC_LOG_AVERAGE is set to False, the corresponding results
will not be output.

3.6.6. VC Evaluation Level (Output to GPIO)

Based on the VC evaluation level, this application controls GPIO pins and outputs signals to the relay control
board. If the configuration parameter VC_CONTROL_GPIO is set to False, this control will not be performed.

GPIO control follows the specifications of the relay control board.

Table 3-2 ADRSRU4 GPIO Specifications

Relay Number ‘ GPIO Pin Number

1 4
2 17
3 27
4 22

Accordingly, the relay board is controlled for each VC evaluation level as shown below.
Table 3-3 Relay Control by VC Evaluation Level
Relay VC Evaluation Level

Number | OA | A B C D E F G
1 ON

2 ON
3 ON
4

ON | ON | ON | ON | ON

3.6.7. Status Messages

This application sends MQTT messages containing the VC evaluation level and FFT results.

These messages can be viewed in a web browser on a PC using the Monitoring Application.
For details, refer to Related Document 4.

Table 3-4 Status Message Specifications

Message Type |Topic Name ‘ Message Content
Sensor VC Level logger/$L0G/sensor/$MDL/$SNO/vc level: “OA”|"A”|"B”|"C”|"D"|"E"|"F"|"G"
Sensor FFT logger/$L0OG/sensor/$MDL/$SNO/ fft value: [0.000282,0.000124,0.000162, "]

e $L0G: Value of LOGGER_ID in the configuration file
e $MDL: Sensor model name

e $SNO: Sensor serial number

Page 11 MSG006-002h_Rev20250331

The value field in the FFT message contains an array of 27 values calculated as "Composite".
Frequency values are not included in the message.
All messages are in JSON string format and include a timestamp field in the format:

"timestamp": "yyyy/mm/dd hh:mm:ss.nnnnnn"

3.6.8. Log File

This application outputs log files in accordance with the specifications of the Raspi Logger.

The following information is output specifically by this application:
e File names of VC evaluation data files

e VC evaluation levels
3.6.9. Output Folder

All files output by this application are saved in folders named according to the [measurement date and
time], following the same specifications as the Raspi Logger.

Page 12 MSG006-002h_Rev20250331

4. Setting Up on Raspberry Pi

This section describes the procedure for setting up this application on a Raspberry Pi.

4.1. File and Folder Structure

After extracting the downloaded ZIP file, the file and folder structure is as follows:

Extracted Folder

—— bin # Configuration files required to build the runtime
—— pyproject.toml # Python project configuration file

F—— src # Python source code of this application

—— sub # Installation packages for referenced libraries

| —— raspi_logger-1.2.8-py3-none-any.whl # Raspi Logger installation file

| L—— vc_calculation-1.8.0-py3-none-any.whl # VC Evaluation Library installation file

L—— .env.default # Template for the application’s configuration file

7

Figure 4-1 File and Folder Structure

4.2. Preparation

Before starting the setup, refer to Related Document 1 and complete the following preparations:
e Connect the Raspberry Pi and PC to the same network
e Ensure the Raspberry Pi has internet access

e Install an MQTT broker (e.g.,mosquitto) on the Raspberry Pi

This guide assumes the following:
e Raspberry Pi username: pi

e Fixed IP address: 192.168.1.52

If you use different values, please adjust the commands accordingly.

4.3. Transfer ZIP File to Raspberry Pi

Run the following command to transfer the downloaded ZIP file to the Raspberry Pi:
- scp MSGPP6-001a.zip pi@192.168.1.52:.

The file will be transferred to the home directory of the pi user.

4.4. Install the Application on Raspberry Pi

Follow these steps to install the application:
1. Log in to the Raspberry Pi:
» ssh pi@192.168.1.52
2. Create the installation directory:

> sudo mkdir /app (* If /app does not exist)
- sudo chown pi:pi /app (* Change ownership)

Page 13 MSG006-002h_Rev20250331

- mkdir -p /app/MSGO06-001a
3. Extract the ZIP file:

cd /app/MSGOR6-001a
- unzip ~/MSGOL6-001a.zip

4. Create a Python virtual environment for running the application:
(Use system-installed GPIO modules by specifying an additional option)

> python -m venv --system-site-packages venv
source venv/bin/activate

5. Upgrade pip to the latest version:
- pip install -U pip
6. Install the required libraries:
pip install . sub/*.whl

7. Install service registration files to the OS for executing each application including this application as
needed:

For this application
sudo cp bin/vc_calc_app@.service /etc/systemd/system
For Raspi Logger
sudo cp bin/logger@.service /etc/systemd/system
» For Raspi Logger hardware monitor
sudo cp bin/hwmonitor.service /etc/systemd/system

8. Reload systemd to recognize the new services:

- sudo systemctl daemon-reload

Note: These service files assume the Python virtual environment is located at /app/MSG006-001a.
If you use a different path, modify the following line in each file accordingly:

ExecStart=/app/MSGO06-001a/venv/bin/python -m (the rest of the lines varies depending on the
application)

4.5. Application Configuration

Copy the configuration file template and create the actual configuration file:
- cp .env.default .env

Edit the .env file as needed using a text editor.

Refer to Section 3.3 Application Configuration Parameters for details on each setting.

Page 14 MSG006-002h_Rev20250331

5. Running the Application

The execution method for this application follows the same procedure as the Raspi Logger.

You can run the application in the following ways:

e Register the application to start automatically at OS boot
sudo systemctl enable vc_calc_app@auto.service

e Start the application using the measurement time specified in the configuration file
sudo systemctl start vc_calc_app@manual.service

e Start the application by specifying the measurement time (in seconds)
sudo systemctl start vc_calc_app@[measurement_time].service
» * Replace [measurement_time] with the desired humber of seconds.

Alternatively, run the application directly using the Python command
- python -m vc_calc_app [measurement time]

For more details, refer to Related Document 2.

Page 15 MSG006-002h_Rev20250331

6. Appendix : Developer Guide

This chapter serves as a developer guide, providing information necessary not only for adding or modifying
features of this application, but also for developing derivative applications based on Raspi Logger.

e Building the development environment
e Customizing Raspi Logger

e Building the development environment

6.1. Building the development environment

Assumes the ZIP file has been extracted to a folder on your local PC.

6.1.1. Creating a Python Virtual Environment

Launch PowerShell/Terminal and create Python virtual environment in a folder extracted the ZIP file.

For Windows:

e Launch PowerShell and execute the following command.
py -3.11 -m venv venv
- venv\scripts\activate.psl

For macOS/Linux:

e Launch Terminal and execute the following command.
python3.11 -m venv venv
- source venv/bin/activate

6.1.2. Installing Packages

Install the packages used by this application.

For Windows (PowerShell):
> python -m pip install -U pip
pip install -e .

For macOS/Linux (Terminal):
- pip install -U pip
pip install -e .

The source code of this application is installed into the virtual environment in editable mode.
To install packages used only for development and testing:

For Windows:
pip install -e .[dev,test]

For MacOS/Linux:
- pip install -e ".[dev,test]"

6.2. Raspi Logger Customization Guide

6.2.1. Overview of Raspi Logger Program

Raspi Logger is a program that measures vibration data using USB-connected sensors on a Raspberry Pi and
saves the data to CSV files. The process follows this general flow:

Page 16 MSG006-002h_Rev20250331

Vibration Measurement System
1.Read config

n1;;:ﬂi:>

2-1.5can USB

wa:era?—)

Controller

2-2.Generate SEHSOI’

3. Start Measuremeant

5. Stop Measurement I~

r
=T

Figure 6-1 RasPi Logger Sequence

1. The program starts and reads configuration values from a file.
2. The program scans connected USB and generates Sensor object controlling a sensor according to the

found model name.

3. The program orders Sensor object to start measurement.
4. The Sensor object generates Reader process to read data from sensor and Writer process to output the

read data, thereby performing the measurement operation.
5. The program stops the measurement either at a preconfigured time or in response to an external signal.

If multiple sensors are connected, a set of Sensor, Reader, and Writer objects is created for each. For
example, if four sensors are connected, the objects are structured as shown in the following figure.

Sensor
| e) ()
B) s T S |
| Fedrroes) (5
| (b) ()
S) e T R |
| e roces |- ()
S) T ST

Figure 6-2 Raspi Logger Object Structure

6.2.2. Customization Overview

RasPi Logger is a Python program that operates using multiprocessing, and it is equipped with a mechanism
that allows key objects to be replaced to support extensibility.

Key objects are generated from a single Factory object, which can be replaced to use extended versions of

those objects.

This follows the Abstract Factory design pattern.

Page 17

MSG006-002h_Rev20250331

Since the Factory object can be passed to the main function, you can replace the Factory object by creating
an extended version before calling main and passing it as an argument.

6.2.3. logger.LoggerFactory Class

This is the interface class for the Factory object that generates key components in Raspi Logger. The default
implementation is logger.core.LoggerFactoryImpl.
To customize, inherit from LoggerFactoryImpl and override the necessary methods:
e create_configurator(): Generates a Configurator object.
e create_A342(): Creates an object to control A342 sensors.
e create_A352(): Creates an object to control A352 sensors.
e create_reader_process(): Creates the Reader process.

e create_writer_process(): Creates the Writer process.

6.2.3.1. create_configurator() Method
This method generates a logger.core.Configurator object, which checks the configuration file and creates a
logger.core.Config object that holds the configuration values.

If you want to add new configuration values, define an extended Configurator class, and modify this method
to return the object of that class.

6.2.3.2. create_A342() Method

If an A342 sensor is connected to the Raspberry Pi, this method creates a logger.measure.A342 object to
control the sensor.

To change the behavior of data reading and writing for the A342 sensor, define an extended A342 class and
modify this method to return the object of that class.

6.2.3.3. create_A352() Method
If an A352 sensor is connected to the Raspberry Pi, this method creates a logger.measure.A352 object to
control the sensor.

To change the behavior of data reading and writing for the A352 sensor, define an extended A352 class and
modify this method to return the object of that class.

6.2.3.4. create_reader_process() Method

This method creates the Reader process used when a Sensor object starts measurement. Specifically, it
creates the Reader process by specifying the logger.measure.reader_job function in
logger.core.LoggerProcess.

If you want to customize the function executed in the Reader process, define an extended job function, and
modify this method to use it.

6.2.3.5. create_writer_process() Method

This method creates the Writer process used when a Sensor object starts measurement. Specifically, it
creates the Writer process by specifying the logger.measure.writer_job function in
logger.core.LoggerProcess.

Page 18 MSG006-002h_Rev20250331

If you want to customize the function executed in the Writer process, define an extended job function, and
modify this method to use it.

6.3. Customization Points for the VC-Based Vibration Measurement System

This application utilizes the extension mechanisms of Raspi Logger described above to enable vibration
measurement using the VC Evaluation Library. The following customizations have been implemented:

6.3.1. vc_calc_app.VcConfig Class

This class inherits from logger.core.Config and serves as a data class that holds additional configuration
parameters specific to this application.

6.3.2. vc_calc_app.VcConfigurator Class

This class inherits from logger.core.Configurator. It reads the additional configuration parameters from the
configuration file and returns a vVcConfig object.

6.3.3. vc_calc_app.VcWriterArgs Class

This class inherits from logger.measure.WriterArgs.
It is extended to perform calculations using the VC Evaluation Library as part of the output processing for
measurement data.

The WriterArgs object is generated by the Sensor class for each sensor and holds sensor-specific parameters
to support output processing. By extending this object, VC evaluation is integrated into the output process.

6.3.4. vc_calc_app.VcGPIO Class

This class is created to handle GPIO control based on VC evaluation results. The VcWriterArgs object uses it
during processing to control GPIO.

6.3.5. vc_calc_app.VcA352 Class

This class inherits from logger.measure.A352. It generates a VcWriterArgs object to perform VC evaluation as
part of the output process.

To achieve this, the following method is extended:
6.3.5.1. to_writer_args() Method

This method is defined in the logger.measure.Sensor class and is responsible for generating a WriterArgs
object. In VcA352, it returns a VclWriterArgs object.

6.3.6. vc_calc_app.VcLoggerFactory Class

This class inherits from logger.core.LoggerFactoryImpl and defines the following methods:
6.3.6.1. create_configurator() Method

Creates and returns a VcConfigurator object.

6.3.6.2. create_A352() Method

Creates and returns a VcA352 object.

Page 19 MSG006-002h_Rev20250331

6.3.6.3. create_A342() Method

Since A342-series sensors are not supported by this application, this method raises an exception to indicate

that the sensor is not supported when detected.

6.3.7. vc_calc_app.__main__ Module

The src/vc_calc_app/__main__.py file defines the __main__ module for the vc_calc_app package. It creates a

VcLoggerFactory and passes it to the logger.main function.

import sys
from logger import main
from .factory import VclLoggerFactory

if __name__ == "__main__":
code = main(factory=VcLoggerFactory())

sys.exit(code)

Figure 6-3 _ main__ module

Page 20

MSG006-002h_Rev20250331

7. Contact Information

Seiko Epson Corporation

Sales Headquarters MD Sales Department
Contact Information via the Internet

https://www.epsondevice.com/sensing/en/privacy/area-select-inquiry-contact.html

Page 21 MSG006-002h_Rev20250331

https://www.epsondevice.com/sensing/en/privacy/area-select-inquiry-contact.html

	Notice of Document
	Trademark
	Revision History
	1. Related Documents
	2. Introduction
	3. Specifications
	3.1. Verified Operating Environment
	3.2. Supported Sensors
	3.3. Application Configuration Parameters
	3.4. Execution Specifications
	3.5. Input Specifications
	3.6. Output Specifications
	3.6.2. Measurement Data File
	3.6.3. Measurement Information File
	3.6.4. VC Evaluation Data File
	3.6.5. VC Evaluation Level (Output to Log File)
	3.6.6. VC Evaluation Level (Output to GPIO)
	3.6.7. Status Messages
	3.6.8. Log File
	3.6.9. Output Folder

	4. Setting Up on Raspberry Pi
	4.1. File and Folder Structure
	4.2. Preparation
	4.3. Transfer ZIP File to Raspberry Pi
	4.4. Install the Application on Raspberry Pi
	4.5. Application Configuration

	5. Running the Application
	6. Appendix： Developer Guide
	6.1. Building the development environment
	6.1.1. Creating a Python Virtual Environment
	6.1.2. Installing Packages

	6.2. Raspi Logger Customization Guide
	6.2.1. Overview of Raspi Logger Program
	6.2.2. Customization Overview
	6.2.3. logger.LoggerFactory Class
	6.2.3.1. create_configurator() Method
	6.2.3.2. create_A342() Method
	6.2.3.3. create_A352() Method
	6.2.3.4. create_reader_process() Method
	6.2.3.5. create_writer_process() Method

	6.3. Customization Points for the VC-Based Vibration Measurement System
	6.3.1. vc_calc_app.VcConfig Class
	6.3.2. vc_calc_app.VcConfigurator Class
	6.3.3. vc_calc_app.VcWriterArgs Class
	6.3.4. vc_calc_app.VcGPIO Class
	6.3.5. vc_calc_app.VcA352 Class
	6.3.5.1. to_writer_args() Method

	6.3.6. vc_calc_app.VcLoggerFactory Class
	6.3.6.1. create_configurator() Method
	6.3.6.2. create_A352() Method
	6.3.6.3. create_A342() Method

	6.3.7. vc_calc_app.__main__ Module

	7. Contact Information

