IMU (Inertial Measurement Unit)

M-G552PC80

小型・軽量 : 65 x 60 x 30 mm³, 115 g

• 低ノイズ・高安定

- ジャイロバイアス安定性 : 0.8 °/h - 角度ランダムウォーク : 0.06 °/√h

(Gyro センサーは 24bit 分解能で使用を推奨します)

• 6 軸センサー

- 3 軸ジャイロセンサー : ±450 °/s - 3 軸加速度センサー : ±8/±16 G • 内部補正された精度、バイアス、軸間精度 • インターフェイス : CAN Interface • 動作温度 :-30 °C ~ +80 °C : 9 V ~ 32 V • 電源電圧 防水・防塵性能 : IP67

アプリケーション例

- 自動走行
- ナビゲーションシステム
- ポインティングおよびトラッキングシステム

製品名称: 型番

M-G552PC80: X2G000241000200

推奨動作環境

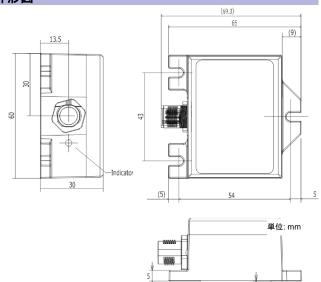
Parameter	Condition	Min.	Тур.	Max.	Unit
Power Supply Voltage	V _{IN} to GND *2	9 ^{*1}	12	32	V
Operating Temperature		-30	_	+80	°C

^{*1.} 電源電圧が9V以下の場合、本デバイスの LED が点灯している場合でもホストと正常に通信できない可能性があります。

製品仕様

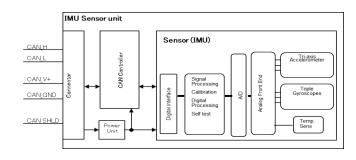
 V_{IN} = 12 V, Ta = 25 °C, angular rate = 0 °/s, ±1 G, unless otherwise specified

Parameter	Test Conditions / Comments	Min.	Тур.	Max.	Unit
GYRO SENSOR					
Sensitivity					
Dynamic Range		_	±450	_	°/s
Scale Factor	16 bits	-0.2%	66	+0.2%	LSB/(°/s)
	24 bits	-0.2%	66 x (28)	+0.2%	
Nonlinearity (Best fit straight line)	1 σ	_	0.05	_	% of FS
Misalignment	1 σ, Axis-to-axis, Δ = 90° ideal	_	0.1	_	0
Bias					
Initial Error	1 σ, −30 °C ≤ Ta ≤ +70 °C	_	360	_	°/h
Repeatability	1 σ, Turn-on to turn-on *3	_	36	_	°/h
Bias Instability	Average	_	0.8	_	°/h
Angular Random Walk	Average	_	0.06	_	°/√h
Linear Acceleration Effect	Average	_	18	_	(°/h)/G
Noise Density	f = 10 Hz to 20 Hz	_	4.7	_	(°/h)/√Hz, rm:
Frequency Property					
3 dB Bandwidth		_	189	_	Hz
ACCELEROMETERS					
Sensitivity					
Dynamic Range		_	±8/±16*4	_	G
Scale Factor	16 bits, Output Range ±8	-0.1%	4	+0.1%	LSB/mG
	16 bits, Output Range ±16	-0.1%	2	+0.1%	
Nonlinearity (Best fit straight line)	1 σ, < 5 G	_	0.1	_	% of FS
Misalignment	1 σ, Axis-to-axis, Δ = 90 ° ideal	_	0.01	_	0
Bias					
Initial Error	1 σ, −30 °C ≤ Ta ≤ +70 °C	_	3	_	mG
Repeatability	1 σ, Turn-on to turn-on *3	_	2	_	mG
Bias Instability	Average	_	24	_	μG
Velocity Random Walk	Average	_	0.02	_	(m/s)/√h
Noise Density	f = 10 Hz to 20 Hz	_	50	_	µG/√Hz, rms
Frequency Property					
3 dB Bandwidth		_	333	_	Hz
TEMPERATURE SENSOR					
Scale Factor *1*2	Output = 0 @ +25 °C	_	0.00390625	_	°C/LSB

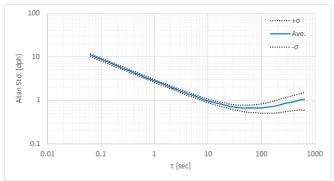

^{*2.} 本デバイスに電源投入後、電源電圧は2秒以内に推奨動作条件に達する必要があります。

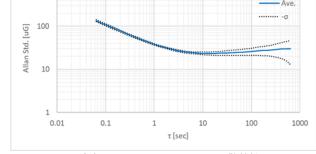
- 内部温度補正のためのリファレンスであり、内部温度の絶対値を保証するものではありません。 温度上位 16 bit (TEMP_HIGH) におけるスケールファクターです。 *1.
- *2.
- Turn-on to Turn-on / Day to Day 5 日間の変動期待値です。 *3.
- *4. Object Dictionary(OD[2021h,03h])設定変更により選択可能です。

注)


- 仕様値は工場出荷時の校正値に基づいており、使用状況に応じて値が変化する場合があります。
- Typ.仕様値は平均値または1 σ 値です。
- 特記ない場合、Max./Min.仕様値は、設計値または工場出荷試験の最大/最小値です。
- 加速度センサー特性は、Output Range設定に依存しません。

外形図




ブロック図

1000

代表的性能特性

-----+σ

ジャイロセンサーのルートアラン分散特性

加速度センサーのルートアラン分散特性

上記は製品の特性例であり、仕様を保証するものではありません。

0.2

本資料のご使用につきましては、次の点にご留意願います。

本資料の内容については、予告なく変更することがあります

- 1. 本資料の一部、または全部を弊社に無断で転載、または、複製など他の目的に使用することは堅くお断りします。
- 2. 弊社製品のご購入およびご使用にあたりましては、事前に弊社営業窓口で最新の情報をご確認いただきますとともに、弊社ホームページなどを通じて公開される最新情報に常にご注意ください。
- 3. 本資料に掲載されている応用回路、プログラム、使用方法などはあくまでも参考情報です。お客様の機器・システムの設計において、応用回路、プログラム、使用方法などを使用 する場合には、お客様の責任において行ってください。これらに起因する第三者の知的財産権およびその他の権利侵害ならびに損害の発生に対し、弊社はいかなる保証を行うもの ではありません。また、本資料によって第三者または弊社の知的財産権およびその他の権利の実施権の許諾を行うものではありません。
- 4. 弊社は常に品質、信頼性の向上に努めていますが、一般的に半導体製品は誤作動または故障する場合があります。弊社製品のご使用にあたりましては、弊社製品の誤作動や故障により生命・身体に危害を及ぼすこと又は財産が侵害されることのないように、お客様の責任において、お客様のハードウエア、ソフトウエア、システムに必要な安全設計を行うようお願いします。なお、設計および使用に際しては、弊社製品に関する最新の情報(本資料、仕様書、データシート、マニュアル、弊社ホームページなど)をご確認いただき、それに従ってください。また、上記資料などに掲載されている製品データ、図、表などに示す技術的な内容、プログラム、アルゴリズムその他応用回路例などの情報を使用する場合は、お客様の製品単独およびシステム全体で十分に評価を行い、お客様の責任において適用可否の判断をお願いします。
- 5. 弊社は、正確さを期すために慎重に本資料およびプログラムを作成しておりますが、本資料およびプログラムに掲載されている情報に誤りがないことを保証するものではありません。万一、本資料およびプログラムに掲載されている情報の誤りによってお客様に損害が生じた場合においても、弊社は一切その責任を負いかねます。
- 6. 弊社製品の分解、解析、リバースエンジニアリング、改造、改変、翻案、複製などは堅くお断りします。
- 7. 弊社製品は、一般的な電子機器(事務機器、通信機器、計測機器、家電製品など)および本資料に個別に掲載されている用途に使用されることを意図して設計、開発、製造されています(一般用途)。特別な品質、信頼性が要求され、その誤動作や故障により生命・身体に危害を及ぼす恐れ、膨大な財産侵害を引き起こす恐れ、もしくは社会に深刻な影響を及ぼす恐れのある以下の特定用途に使用されることを意図していません。お客様に置かれましては、弊社製品を一般用途に使用されることを推奨いたします。もし一般用途以外の用途で弊社製品のご使用およびご購入を希望される場合、弊社はお客様の特定用途に弊社製品を使用されることへの商品性、適合性、安全性について、明示的・黙示的に関わらずいかなる保証を行うものではありません。

【特定用途】 宇宙機器(人工衛星・ロケットなど) / 輸送車両並びにその制御機器(自動車・航空機・列車・船舶など) 医療機器 (本資料に個別に掲載されている用途を除く) / 海底中継機器 / 発電所制御機器 / 防災・防犯装置 交通用機器 / 金融関連機器

上記と同等の信頼性を必要とする用途

- 8. 本資料に掲載されている弊社製品および当該技術を国内外の法令および規制により製造・使用・販売が禁止されている機器・システムに使用することはできません。また、弊社製品および当該技術を大量破壊兵器等の開発および軍事利用の目的その他軍事用途等に使用しないでください。弊社製品または当該技術を輸出または海外に提供する場合は、「外国為替及び外国為替法」、「米国輸出管理規則(EAR)」、その他輸出関連法令を遵守し、係る法令の定めるところにより必要な手続きを行ってください。
- 9. お客様が本資料に掲載されている諸条件に反したことに起因して生じたいかなる損害(直接・間接を問わず)に関して、弊社は一切その責任を負いかねます。
- 10. お客様が弊社製品を第三者に譲渡、貸与などをしたことにより、損害が発生した場合、弊社は一切その責任を負いかねます。
- 11. 本資料についての詳細に関するお問合せ、その他お気付きの点などがありましたら、弊社営業窓口までご連絡ください。
- 12. 本資料に掲載されている会社名、商品名は、各社の商標または登録商標です。

2022 12

© Seiko Epson Corporation 2025, All rights reserved.

セイコーエプソン株式会社

MD 営業部

改訂日: 2025 年 6 月 作成日: 2025 年 4 月

Rev. 1.1

https://global.epson.com/products and drivers/sensing system/contact/